LM13700 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

Check for Samples: LM13700

FEATURES
- g_m Adjustable over 6 Decades
- Excellent g_m Linearity
- Excellent Matching between Amplifiers
- Linearizing Diodes
- High Impedance Buffers
- High Output Signal-to-Noise Ratio

APPLICATIONS
- Current-Controlled Amplifiers
- Current-Controlled Impedances
- Current-Controlled Filters
- Current-Controlled Oscillators
- Multiplexers
- Timers
- Sample-and-Hold circuits

DESCRIPTION
The LM13700 series consists of two current controlled transconductance amplifiers, each with differential inputs and a push-pull output. The two amplifiers share common supplies but otherwise operate independently. Linearizing diodes are provided at the inputs to reduce distortion and allow higher input levels. The result is a 10 dB signal-to-noise improvement referenced to 0.5 percent THD. High impedance buffers are provided which are especially designed to complement the dynamic range of the amplifiers. The output buffers of the LM13700 differ from those of the LM13600 in that their input bias currents (and hence their output DC levels) are independent of I_{ABC}. This may result in performance superior to that of the LM13600 in audio applications.

Connection Diagram

Figure 1. PDIP and SOIC Packages-Top View
See Package Number D0016A or NFG0016E

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td></td>
</tr>
<tr>
<td>LM13700</td>
<td>36 V_{DC} or ±18 V</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td></td>
</tr>
<tr>
<td>LM13700N</td>
<td>570 mW</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>±5 V</td>
</tr>
<tr>
<td>Diode Bias Current (I_D)</td>
<td>2 mA</td>
</tr>
<tr>
<td>Amplifier Bias Current (I_{ABC})</td>
<td>2 mA</td>
</tr>
<tr>
<td>Output Short Circuit Duration</td>
<td>Continuous</td>
</tr>
<tr>
<td>Buffer Output Current (3)</td>
<td>20 mA</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td></td>
</tr>
<tr>
<td>LM13700N</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>DC Input Voltage</td>
<td>+V_S to −V_S</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
</tr>
<tr>
<td>Soldering Information</td>
<td></td>
</tr>
<tr>
<td>PDIP Package</td>
<td></td>
</tr>
<tr>
<td>Soldering (10 sec.)</td>
<td>260°C</td>
</tr>
<tr>
<td>SOIC Package</td>
<td></td>
</tr>
<tr>
<td>Vapor Phase (60 sec.)</td>
<td>215°C</td>
</tr>
<tr>
<td>Infrared (15 sec.)</td>
<td>220°C</td>
</tr>
</tbody>
</table>

(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits.

(2) For operation at ambient temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance, junction to ambient, as follows: LM13700N, 90°C/W; LM13700M, 110°C/W.

(3) Buffer output current should be limited so as to not exceed package dissipation.
Electrical Characteristics \(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>LM13700</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage (V(_{OS}))</td>
<td>Over Specified Temperature Range (I_{ABC} = 5\ \mu\text{A})</td>
<td>0.4</td>
<td>4</td>
</tr>
<tr>
<td>(V_{OS}) Including Diodes</td>
<td>Diode Bias Current (I_{D}) = 500 (\mu\text{A})</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>Input Offset Change</td>
<td>(5 \mu\text{A} \leq I_{ABC} \leq 500 \mu\text{A})</td>
<td>0.1</td>
<td>3</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td></td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>Over Specified Temperature Range</td>
<td>0.4</td>
<td>5</td>
</tr>
<tr>
<td>Forward Transconductance (g(_{m}))</td>
<td>Over Specified Temperature Range</td>
<td>6700</td>
<td>9600</td>
</tr>
<tr>
<td>(g_{m}) Tracking</td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Peak Output Current</td>
<td>(R_L = 0, I_{ABC} = 5\ \mu\text{A})</td>
<td>5</td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>(R_L = 0, I_{ABC} = 500\ \mu\text{A})</td>
<td>350</td>
<td>500</td>
<td>650</td>
</tr>
<tr>
<td>(R_L = 0, \text{Over Specified Temp Range})</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Output Voltage</td>
<td>Positive (R_L = \infty, 5 \mu\text{A} \leq I_{ABC} \leq 500 \mu\text{A})</td>
<td>+12</td>
<td>+14.2</td>
</tr>
<tr>
<td>Negative (R_L = \infty, 5 \mu\text{A} \leq I_{ABC} \leq 500 \mu\text{A})</td>
<td>−12</td>
<td>−14.4</td>
<td>V</td>
</tr>
<tr>
<td>Supply Current (I_{ABC} = 500\ \mu\text{A}, \text{Both Channels})</td>
<td>2.6</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>V(_{OS}) Sensitivity</td>
<td>Positive (\Delta V_{OS}/\Delta V^+)</td>
<td>20</td>
<td>150</td>
</tr>
<tr>
<td>Negative (\Delta V_{OS}/\Delta V^-)</td>
<td>20</td>
<td>150</td>
<td>(\mu\text{V/V})</td>
</tr>
<tr>
<td>CMRR</td>
<td></td>
<td>80</td>
<td>110</td>
</tr>
<tr>
<td>Common Mode Range</td>
<td></td>
<td>(\pm12)</td>
<td>(\pm13.5)</td>
</tr>
<tr>
<td>Crosstalk</td>
<td>Referred to Input (^{(2)}) (20 \text{ Hz} < f < 20 \text{ kHz})</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Differential Input Current (I_{ABC} = 0, \text{Input} = \pm4\text{V})</td>
<td></td>
<td>0.02</td>
<td>100</td>
</tr>
<tr>
<td>Leakage Current (I_{ABC} = 0) (Refer to Test Circuit)</td>
<td></td>
<td>0.2</td>
<td>100</td>
</tr>
<tr>
<td>Input Resistance</td>
<td></td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>Open Loop Bandwidth</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Slew Rate</td>
<td>Unity Gain Compensated</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Buffer Input Current (^{(2)})</td>
<td></td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Peak Buffer Output Voltage (^{(2)})</td>
<td></td>
<td>0.5</td>
<td>2</td>
</tr>
</tbody>
</table>

\(^{(1)}\) These specifications apply for \(V_S = \pm 15\text{V}, T_A = 25^\circ\text{C}, \text{amplifier bias current} (I_{ABC}) = 500 \mu\text{A}, \text{pins 2 and 15 open unless otherwise specified. The inputs to the buffers are grounded and outputs are open.}\)

\(^{(2)}\) These specifications apply for \(V_S = \pm 15\text{V}, I_{ABC} = 500 \mu\text{A}, R_{OUT} = 5 \text{k}\(\Omega\) connected from the buffer output to \(-V_S\) and the input of the buffer is connected to the transconductance amplifier output.
Schematic Diagram

Figure 2. One Operational Transconductance Amplifier

Typical Application

Figure 3. Voltage Controlled Low-Pass Filter
Typical Performance Characteristics

Input Offset Voltage

Figure 4.

Input Offset Current

Figure 5.

Input Bias Current

Figure 6.

Peak Output Current

Figure 7.

Peak Output Voltage and Common Mode Range

Figure 8.

Leakage Current

Figure 9.
Typical Performance Characteristics (continued)

- **Input Leakage**
 - Figure 10.

- **Transconductance**
 - Figure 11.

- **Input Resistance**
 - Figure 12.

- **Amplifier Bias Voltage vs. Amplifier Bias Current**
 - Figure 13.

- **Input and Output Capacitance**
 - Figure 14.

- **Output Resistance**
 - Figure 15.
Typical Performance Characteristics (continued)

Distortion vs. Differential Input Voltage

![Distortion vs. Differential Input Voltage](image)

Voltage vs. Amplifier Bias Current

![Voltage vs. Amplifier Bias Current](image)

Output Noise vs. Frequency

![Output Noise vs. Frequency](image)

Unity Gain Follower

![Unity Gain Follower](image)
Circuit Description

The differential transistor pair \(Q_4 \) and \(Q_5 \) form a transconductance stage in that the ratio of their collector currents is defined by the differential input voltage according to the transfer function:

\[
\text{VIN} = \frac{kT}{q} \ln \frac{I_5}{I_4}
\]

(1)

where \(\text{VIN} \) is the differential input voltage, \(kT/q \) is approximately 26 mV at 25°C and \(I_5 \) and \(I_4 \) are the collector currents of transistors \(Q_5 \) and \(Q_4 \) respectively. With the exception of \(Q_{12} \) and \(Q_{13} \), all transistors and diodes are identical in size. Transistors \(Q_1 \) and \(Q_2 \) with Diode \(D_1 \) form a current mirror which forces the sum of currents \(I_4 \) and \(I_5 \) to equal \(I_{ABC} \):

\[
I_4 + I_5 = I_{ABC}
\]

(2)

where \(I_{ABC} \) is the amplifier bias current applied to the gain pin.

For small differential input voltages the ratio of \(I_4 \) and \(I_5 \) approaches unity and the Taylor series of the In function can be approximated as:

\[
I_4 \approx I_5 \approx \frac{I_{ABC}}{2}
\]

(3)

\[
\text{VIN} \left[\frac{I_{ABC}^2}{2kT} \right] = I_5 - I_4
\]

(4)

Collector currents \(I_4 \) and \(I_5 \) are not very useful by themselves and it is necessary to subtract one current from the other. The remaining transistors and diodes form three current mirrors that produce an output current equal to \(I_5 \) minus \(I_4 \) thus:

\[
\text{VIN} \left[\frac{I_{ABC}^2}{2kT} \right] = I_{\text{OUT}}
\]

(5)

The term in brackets is then the transconductance of the amplifier and is proportional to \(I_{ABC} \).

Linearizing Diodes

For differential voltages greater than a few millivolts, Equation 3 becomes less valid and the transconductance becomes increasingly nonlinear. Figure 22 demonstrates how the internal diodes can linearize the transfer function of the amplifier. For convenience assume the diodes are biased with current sources and the input signal is in the form of current \(I_S \). Since the sum of \(I_4 \) and \(I_5 \) is \(I_{ABC} \) and the difference is \(I_{\text{OUT}} \), currents \(I_4 \) and \(I_5 \) can be written as follows:

\[
I_4 = \frac{I_{ABC}}{2} - \frac{I_{\text{OUT}}}{2}, \quad I_5 = \frac{I_{ABC}}{2} + \frac{I_{\text{OUT}}}{2}
\]

(6)

Since the diodes and the input transistors have identical geometries and are subject to similar voltages and temperatures, the following is true:
Notice that in deriving Equation 7 no approximations have been made and there are no temperature-dependent terms. The limitations are that the signal current not exceed $I_0/2$ and that the diodes be biased with currents. In practice, replacing the current sources with resistors will generate insignificant errors.

$$\frac{kT}{q} \ln \frac{I_D + I_S}{I_D - I_S} = \frac{kT}{q} \ln \frac{I_{ABC} + I_{OUT}}{I_{ABC} - I_{OUT}}$$

$$\therefore I_{OUT} = I_S \left(\frac{2I_{ABC}}{I_D} \right) \text{ for } |I_S| < \frac{I_D}{2}$$

(7)
APPLICATIONS

Voltage Controlled Amplifiers

Figure 23 shows how the linearizing diodes can be used in a voltage-controlled amplifier. To understand the input biasing, it is best to consider the 13 kΩ resistor as a current source and use a Thevenin equivalent circuit as shown in Figure 24. This circuit is similar to Figure 22 and operates the same. The potentiometer in Figure 23 is adjusted to minimize the effects of the control signal at the output.

For optimum signal-to-noise performance, I_{ABC} should be as large as possible as shown by the Output Voltage vs. Amplifier Bias Current graph. Larger amplitudes of input signal also improve the S/N ratio. The linearizing diodes help here by allowing larger input signals for the same output distortion as shown by the Distortion vs. Differential Input Voltage graph. S/N may be optimized by adjusting the magnitude of the input signal via R_{IN} (Figure 23) until the output distortion is below some desired level. The output voltage swing can then be set at any level by selecting R_L.

Although the noise contribution of the linearizing diodes is negligible relative to the contribution of the amplifier’s internal transistors, I_D should be as large as possible. This minimizes the dynamic junction resistance of the diodes (r_e) and maximizes their linearizing action when balanced against R_{IN}. A value of 1 mA is recommended for I_D unless the specific application demands otherwise.
Stereo Volume Control

The circuit of **Figure 25** uses the excellent matching of the two LM13700 amplifiers to provide a Stereo Volume Control with a typical channel-to-channel gain tracking of 0.3 dB. \(R_p \) is provided to minimize the output offset voltage and may be replaced with two 510Ω resistors in AC-coupled applications. For the component values given, amplifier gain is derived for **Figure 23** as being:

\[
\frac{V_{O}}{V_{IN}} = 940 \times i_{ABC}
\]

(8)

If \(V_C \) is derived from a second signal source then the circuit becomes an amplitude modulator or two-quadrant multiplier as shown in **Figure 26**, where:

\[
i_O = -\frac{-2i_S(i_{ABC})}{i_D} = -\frac{-2i_S}{i_D} \frac{V_{IN}2}{i_D} - \frac{2i_S}{i_D} (V^+ - 1.4V)
\]

(9)

The constant term in the above equation may be cancelled by feeding \(i_S \times I_{O}R_C/2(V^- + 1.4V) \) into \(I_O \). The circuit of **Figure 27** adds \(R_M \) to provide this current, resulting in a four-quadrant multiplier where \(R_C \) is trimmed such that \(V_O = 0V \) for \(V_{IN2} = 0V \). \(R_M \) also serves as the load resistor for \(I_O \).
Noting that the gain of the LM13700 amplifier of Figure 24 may be controlled by varying the linearizing diode current I_D as well as by varying I_{ABC}. Figure 28 shows an AGC Amplifier using this approach. As V_O reaches a high enough amplitude (3V$_{BE}$) to turn on the Darlington transistors and the linearizing diodes, the increase in I_D reduces the amplifier gain so as to hold V_O at that level.

Voltage Controlled Resistors

An Operational Transconductance Amplifier (OTA) may be used to implement a Voltage Controlled Resistor as shown in Figure 29. A signal voltage applied at R_X generates a V_{IN} to the LM13700 which is then multiplied by the g_m of the amplifier to produce an output current, thus:

$$R_X = \frac{R + R_A}{g_m R_A} \quad (10)$$

where $g_m \approx 19.2I_{ABC}$ at 25°C. Note that the attenuation of V_O by R and R_A is necessary to maintain V_{IN} within the linear range of the LM13700 input.

Figure 30 shows a similar VCR where the linearizing diodes are added, essentially improving the noise performance of the resistor. A floating VCR is shown in Figure 31, where each “end” of the “resistor” may be at any voltage within the output voltage range of the LM13700.
Figure 28. AGC Amplifier

Figure 29. Voltage Controlled Resistor, Single-Ended

Figure 30. Voltage Controlled Resistor with Linearizing Diodes
Voltage Controlled Filters

OTA’s are extremely useful for implementing voltage controlled filters, with the LM13700 having the advantage that the required buffers are included on the I.C. The VC Lo-Pass Filter of Figure 32 performs as a unity-gain buffer amplifier at frequencies below cut-off, with the cut-off frequency being the point at which X_C/g_m equals the closed-loop gain of (R/R_A). At frequencies above cut-off the circuit provides a single RC roll-off (6 dB per octave) of the input signal amplitude with a -3 dB point defined by the given equation, where g_m is again $19.2 \times I_{ABC}$ at room temperature. Figure 33 shows a VC High-Pass Filter which operates in much the same manner, providing a single RC roll-off below the defined cut-off frequency.

Additional amplifiers may be used to implement higher order filters as demonstrated by the two-pole Butterworth Lo-Pass Filter of Figure 34 and the state variable filter of Figure 35. Due to the excellent g_m tracking of the two amplifiers, these filters perform well over several decades of frequency.
Figure 33. Voltage Controlled Hi-Pass Filter

Figure 34. Voltage Controlled 2-Pole Butterworth Lo-Pass Filter
Voltage Controlled State Variable Filter

The classic Triangular/Square Wave VCO of Figure 36 is one of a variety of Voltage Controlled Oscillators which may be built utilizing the LM13700. With the component values shown, this oscillator provides signals from 200 kHz to below 2 Hz as I_C is varied from 1 mA to 10 nA. The output amplitudes are set by $I_A \times R_A$. Note that the peak differential input voltage must be less than 5V to prevent zenering the inputs.

A few modifications to this circuit produce the ramp/pulse VCO of Figure 37. When V_{O2} is high, I_F is added to I_C to increase amplifier A1's bias current and thus to increase the charging rate of capacitor C. When V_{O2} is low, I_F goes to zero and the capacitor discharge current is set by I_C.

The VC Lo-Pass Filter of Figure 32 may be used to produce a high-quality sinusoidal VCO. The circuit of Figure 37 employs two LM13700 packages, with three of the amplifiers configured as lo-pass filters and the fourth as a limiter/inverter. The circuit oscillates at the frequency at which the loop phase-shift is 360° or 180° for the inverter and 60° per filter stage. This VCO operates from 5 Hz to 50 kHz with less than 1% THD.

Figure 36. Triangular/Square-Wave VCO
Figure 37. Ramp/Pulse VCO

Figure 38. Sinusoidal VCO

Figure 39 shows how to build a VCO using one amplifier when the other amplifier is needed for another function.
Additional Applications

Figure 40 presents an interesting one-shot which draws no power supply current until it is triggered. A positive-going trigger pulse of at least 2V amplitude turns on the amplifier through R_B and pulls the non-inverting input high. The amplifier regenerates and latches its output high until capacitor C charges to the voltage level on the non-inverting input. The output then switches low, turning off the amplifier and discharging the capacitor. The capacitor discharge rate is speeded up by shorting the diode bias pin to the inverting input so that an additional discharge current flows through D_I when the amplifier output switches low. A special feature of this timer is that the other amplifier, when biased from V_O, can perform another function and draw zero stand-by power as well.

The operation of the multiplexer of Figure 41 is very straightforward. When A1 is turned on it holds V_O equal to V_IN1 and when A2 is supplied with bias current then it controls V_O. C_C and R_C serve to stabilize the unity-gain configuration of amplifiers A1 and A2. The maximum clock rate is limited to about 200 kHz by the LM13700 slew rate into 150 pF when the (V_IN1−V_IN2) differential is at its maximum allowable value of 5V.

The Phase-Locked Loop of Figure 42 uses the four-quadrant multiplier of Figure 27 and the VCO of Figure 39 to produce a PLL with a ±5% hold-in range and an input sensitivity of about 300 mV.
The Schmitt Trigger of Figure 43 uses the amplifier output current into R to set the hysteresis of the comparator; thus $V_H = 2 \times R \times I_B$. Varying I_B will produce a Schmitt Trigger with variable hysteresis.
Figure 44 shows a Tachometer or Frequency-to-Voltage converter. Whenever A1 is toggled by a positive-going input, an amount of charge equal to \((V_H - V_L) \cdot C_t\) is sourced into \(C_t\) and \(R_t\). This once per cycle charge is then balanced by the current of \(V_o/R_t\). The maximum \(F_{IN}\) is limited by the amount of time required to charge \(C_t\) from \(V_L\) to \(V_H\) with a current of \(I_B\), where \(V_L\) and \(V_H\) represent the maximum low and maximum high output voltage swing of the LM13700. D1 is added to provide a discharge path for \(C_t\) when A1 switches low.

The Peak Detector of Figure 45 uses A2 to turn on A1 whenever \(V_{IN}\) becomes more positive than \(V_O\). A1 then charges storage capacitor \(C\) to hold \(V_O\) equal to \(V_{IN}\) PK. Pulling the output of A2 low through D1 serves to turn off A1 so that \(V_O\) remains constant.
The Ramp-and-Hold of Figure 47 sources \(I_B \) into capacitor \(C \) whenever the input to \(A_1 \) is brought high, giving a ramp-rate of about 1V/ms for the component values shown.

The true-RMS converter of Figure 48 is essentially an automatic gain control amplifier which adjusts its gain such that the AC power at the output of amplifier \(A_1 \) is constant. The output power of amplifier \(A_1 \) is monitored by squaring amplifier \(A_2 \) and the average compared to a reference voltage with amplifier \(A_3 \). The output of \(A_3 \) provides bias current to the diodes of \(A_1 \) to attenuate the input signal. Because the output power of \(A_1 \) is held constant, the RMS value is constant and the attenuation is directly proportional to the RMS value of the input voltage. The attenuation is also proportional to the diode bias current. Amplifier \(A_4 \) adjusts the ratio of currents through the diodes to be equal and therefore the voltage at the output of \(A_4 \) is proportional to the RMS value of the input voltage. The calibration potentiometer is set such that \(V_O \) reads directly in RMS volts.
The circuit of Figure 49 is a voltage reference of variable Temperature Coefficient. The 100 kΩ potentiometer adjusts the output voltage which has a positive TC above 1.2V, zero TC at about 1.2V, and negative TC below 1.2V. This is accomplished by balancing the TC of the A2 transfer function against the complementary TC of D1.

The wide dynamic range of the LM13700 allows easy control of the output pulse width in the Pulse Width Modulator of Figure 50.

For generating I_{ABC} over a range of 4 to 6 decades of current, the system of Figure 51 provides a logarithmic current out for a linear voltage in.

Since the closed-loop configuration ensures that the input to A2 is held equal to 0V, the output current of A1 is equal to $I_3 = -V_C/R_C$.

The differential voltage between Q1 and Q2 is attenuated by the R1,R2 network so that A1 may be assumed to be operating within its linear range. From Equation 5, the input voltage to A1 is:

$$V_{IN1} = \frac{-2kT_3}{q_2} = \frac{-2kT_C}{q_2 R_C}$$ \hspace{1cm} (11)

The voltage on the base of Q1 is then

$$V_{B1} = \frac{(R_1 + R_2) V_{IN1}}{R_1}$$ \hspace{1cm} (12)

The ratio of the Q1 and Q2 collector currents is defined by:

$$V_{B1} = \frac{kT}{q} \ln \frac{I_{Q2}}{I_{C1}} \approx \frac{kT}{q} \ln \frac{I_{ABC}}{I_{1}}$$ \hspace{1cm} (13)

Combining and solving for I_{ABC} yields:

$$I_{ABC} = I_1 \exp \left(\frac{2(R_1 + R_2) V_C}{R_1 I_2 R_C} \right)$$ \hspace{1cm} (14)

This logarithmic current can be used to bias the circuit of Figure 25 to provide temperature independent stereo attenuation characteristic.
Figure 49. Delta VBE Reference

Figure 50. Pulse Width Modulator
Figure 51. Logarithmic Current Source

\[i_{ABC} = i_t \exp \left(\frac{-C_3}{\tau} \right) \]
REVISION HISTORY

Changes from Revision D (March 2013) to Revision E

<table>
<thead>
<tr>
<th>Change</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed layout of National Data Sheet to TI format</td>
<td>24</td>
</tr>
</tbody>
</table>
Packaging Information

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM13700M</td>
<td>NRND</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>48</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 70</td>
<td>LM13700M</td>
<td>Samples</td>
</tr>
<tr>
<td>LM13700M/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>48</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LM13700M</td>
<td>Samples</td>
</tr>
<tr>
<td>LM13700MX</td>
<td>NRND</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 70</td>
<td>LM13700M</td>
<td>Samples</td>
</tr>
<tr>
<td>LM13700NX/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LM13700N</td>
<td>Samples</td>
</tr>
<tr>
<td>LM13700N</td>
<td>NRND</td>
<td>PDIP</td>
<td>NFG</td>
<td>16</td>
<td>25</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 70</td>
<td>LM13700N</td>
<td>Samples</td>
</tr>
<tr>
<td>LM13700N/NOPB</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>NFG</td>
<td>16</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU SN</td>
<td>Level-1-NA-UNLIM</td>
<td>0 to 70</td>
<td>LM13700N</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
- **TBD**: The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS)**: TI terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, Ti Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt)**: This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br)**: TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM13700MX</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>10.3</td>
<td>2.3</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM13700MX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>10.3</td>
<td>2.3</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM13700MX</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM13700MX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
Dimensions are in inches
Dimensions in 1.1 for reference only.
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AC.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products
Audio [www.ti.com/audio] Applications
Automotive and Transportation [www.ti.com/automotive]
Amplifiers [amplifier.ti.com] Communications and Telecom [www.ti.com/communications]
TI E2E Community [www.ti.com/e2e]
Wireless Connectivity [www.ti.com/wireless-connection] e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated