a9y United States
(12) Patent Appucatlon Pubiication (10) Pub. No.: US 2006/0174221 Al

Kinsella et al.

(43) Pub. Date: Aug. 3, 2006

(73)

(1)

TMOTE COMDON

n
ANELUIVARS 1 0L URUIYAD RN

ARCHITECTURE

TNT
i i

A
N1 AINLS O

CONN
L9

ININ

TOTION
FAE SRV |

i

Inventors: Kevin Kinsella, Escondido, CA (US);
Roger Theodore Sumner, Solana

Doanlk (A (TTQY
DCalil, WA (uUO)

Correspondence Address:

Robert P. Lenart

Pietragallo, Bosick & Gordon

Nna ODwfo

Elaa

wd Mantwa 29+
UMIC UXI0FG LENe, Soul ridor

301 Grant Street

Pittsburgh, PA 15219 (US)

Assignee: Northrop Grumman Corporation, Los
Ancalee (A

Z3ngeies, LA

Vo I BY i1 1. Tozw 21 ANNnE
\LL} ruca. JdAll Jl’ LUUD
Publication Classification

(51) Int. CL

GO6F 9/44 (2006.01)
(52) US. Cl ettt 717/106
I8N ADQCTDANT
\J i } P VP IS\ Ve L WS §

A method of developing software comprises the steps of
defining a plurality of component objects for receiving input
data and producing output data, defining a plurality of
connection objects for passing data between the component
objects, and executing an initialization script to define a
behavioral model for the system by defining relationships
between the (‘nmnrmpnt (\]’\1P(‘TQ and the connection r\h1P(‘TQ

A software development system that performs the method is

Appl. No.: 11/047,132 also provided.
ACSIM HARDWARE ENVIRONMENT 30
ACSIM VIRTUAL ENVIRONMENT ~
34 -
L / UH‘IHWII\JD {
MODEL \AIR VEHICLE
FLIGHT
SENSORS b oo | SUBSYSTEM
~ 'REDUNDANT :',.. /"' CLCIVIENTO
' FLIGHT it/
4% — COMPUTER 3!
V" | | [conFigURATION I GRACHICAL
& CONTROL [| o= !
SCRIPTS INTERFACE
T \ | T
) 1
20 \ REDUNDANT }1/ 22
cduputen
36— "set
p——————|
4p
2~ N/ V/\/
10 ACSIM HARDWARE ENVIRONMENT °
{ “ ACSIM VIRTUAL ENVIRONMENT
T N Fol
ACSIM VIRTUAL ENVIRONMEN 46 F?.PGOHT 12 18
g ©00F |1p 18 L L /] DYNAMICS [w {
14 _ FLIGHT - { FLIGHT d MODEL JAR VEHICLE
{ / DYNAMICS \ AR SENSORS| _ _ _ _ _ SUBSYSTEM
FLIGH MODEL VEHICLE . :REEH%B?NF&I ELEMENTS
SENSORS suBsysTEM || | —— \\ N | E—
REDUNDANT I COMPUTER I
oG ELEMENTS coiSt I\ LTSET !/ (ahapHica
- e USER
TEST URATION
CONFG- <Q‘ GRAPHCAL || |} |4 comot \ s / NTERFACE
URATION vOLh SCRIPTS A J
& CONTROL| 16 INTERFACE - \ / 22
SCRIPTS ~20 597] \ 7
— - 20 REDUNDANT
FLIGHT
36 CONgyTER

Patent Application Publication Aug.3,2006 Sheet 1 of 2 US 2006/0174221 A1

ACSIM HARDWARE ENVIRONMENT 30
ACSiM VIRTUAL ENVIRONMENT

34~ 1 _6DpF_ 12 40
% FLIGHI 10

1A DYNAMICS {
/1 PHobE ™\ AIR VEHICLE

FLGHT ¢ —— | SUBSYSTEM
SPNSORS .. REDURDANT 7, /] ELEMENTS

o
~

4:> \\: FLIGHT 5;-,',
— TEST | COMPUTER

Y1 | [cONFIGURATION| \ Loz :::/ GRAPHICAL

~—— 32

&CONTROL [\ T+~ i
SCRIPTS

(\
\

\
N
oy

an. | COMPUTER r

“Y SH ”

/jo
42~ N/
10 ACSIM HARDWARE ENVIRONMENT
! 44| ACSVRTUAL ENVIFORVENT
ACSIM VIRTUAL ENVIRONMENT N 6O0F |12
46 FLIGHT 48
600F |12 18 / | DYNAMICS & !
14 _ FLIGHT { FugHT [© L_MOBEL | “\JARR VEHICLE
P [N VEHICLE SINSORS| epgaTy, JELEMENTS
FLIGHT | L= e
— T\ _FUGHT v —
SENOPO JreummT ¢ veviens ||| esr | | COMPUTER 1
FLIGHT '/ |GRAPHICAL
CONFIG- | \tm2m—
ST) L ser ||| [ommeraar ||| URATON LLL_T—_ INTEREACE
CONFIG- §H=|| & CONTROL
pAL M1 O =
& CONTROL| 16 INTERFACE ” \ /
SCHlPTS \20 22-/ ’Jn nl_nl(llnﬁll'{
LU REUUNUANI
FLIGHT ”
35| COVPUTER

FIG. 1

Aug. 3,2006 Sheet 2 of 2 US 2006/0174221 A1

Patent Application Publication

¢l

7

99

——

JeIE
133HSAVIYS 130Xd

aNVLS 1531
1dId3S IS8 VNSIA

" —

v9-

JOV44IINI
(N02) A0
193r40
ININOINOI

4007 IHL NI 3VMOHYH 4O SI3SSY NOLLYINAIS JLONTY 0L <22 ~0.
08 ~— %M
TAGOW SDINYNAQ
1H9I14 4009 &
/ L
sovsa/ \youow 15
IS AL 34vS 3dAL £x
91~ oz
[
/] \.«U > mmmmm
8. _WN 9 _M_ e sk
.Y ST A
SINILSAS-8NS ST300W HOSN3S <a
=)
moimm:z._/ J9V443INI %
34vS 3dAL \ 34YS 3dAL
N
L &D_ %M N
ETLTATVS) W o= _HNT\D -—
p Y3LNNOD LHOI4
" N\v (INFNNOYIANT NOILYTNIIS JWIL Tv3Y)
INIINNY XY

v

15103 _._m_o

| MO0

u_ ~09

/
AN

$133r40
AX0dd

DA

WVH904d

NIVIN NISOV

|8

(30v44
BN

3INIIND)
MOY4

c Ol

US 2006/0174221 Al

REMOTE COMPONENT AND CONNECTION
ARCHITECTURE

FIELD OF THE INVENTION

[0001] This invention relates to computer software sys-
tems, and more particularly, to such systems including
multiple objects, which may be implemented in separate
locations and can interface with hardware components.

BACKGROUND OF THE INVENTION

nnn1 Qafie Ao he comnanon
UUUhJ SonIwWard u\/V\/A\JlJLlLblll isa oxéuulucuu vuxuyuuuuL

both the cost and schedule of the development of
unmanned air vehicle systems. Three types of software are
required to implement and validate an Unmanned Autono-
mous Vehicle (UAV) program: the Operational Flight Pro-
graim \OFP) the Closed [LO0p Simulation (CJ_JS) and the Test
Environment. Unfortunately, very little software is reused
from one UAV program to the next. Not only is the OFP
often redeveloped from scratch, but also the CLS environ-
ment and the software testing environments are all “rein-
135

vented” on a PfUdeIIl Dy PngdeIl Ddblb rcbuulug, l[l lllLlU
consistency, lower quality, and higher costs.

—

[6663] OFP developmeni siraiegy iradiiionaily aims
toward the implementation of a single instance of a large
executable program that resides in a specific single target
computer using cross-compilation tools. This preconception
unnecessarily results in artificial obstacles in the software
development process, such as the prerequisite delivery of
specialized hardware and/or development tools before any
practical software testing can be performed, with the addi-
tional possibility that undesirable and undetectable system
timing dependencies may be embedded in OFP source code.

[0004] The current method for developing (light sofiware
places constraints on the software developers by requiring
them to develop pieces of the OFP code from scratch on their
desktop and then wait until the flight computers are ready on
a hot bench hefore Thev can do verification and validation.
Traditionally, the hot bench becomes a choke point for the
schedule as many developers all vie for access to this
precious resource. This requires a substantial investment in

a hot bench, with a flight computer for each instance of the
QFP. This in turn leads to schedule delays, cost overruns

1118 1 urn 1eads scnecuie gcelay COost crruns,

and a lesser quality product as typically two shifts are run.
100051

LUV}

ware more efficiently.

There is a need for a svs

There is a need for a system for developing soft-

o
12 S

SUMMARY OF THE INVENTION

[0006] This invention provides a method of developing
software comprising the steps of defining a plurality of
component objects for recelVlng 1nput data and producmg
OULPUL data, ucuu_lng, pluuuu_y' of conmnection UUJeC‘lS for
passing data between the component objects, and executing
an initialization script to define relationships between the

component objects and the connection objects.

[0007] Each of the component objects defines a run
method for processing the input data to produce the output
data, and each of the component objects operates at a defined
run rate. A dispatch manager caiis each of the component
objects in accordance with the run rate of the component
objects. The connection objects can be controlled to view a
signal, perturb a signal, or inject a fault.

—

Aug. 3, 2006

[0008] The component objects can represent a hardware
comnonent Qr a QNH\XIQFP comnonent n'F

component a soltware component of

system. The connection objects contain one or more scalar
connections for passing single data elements, vector con-
nections for passing arrays of data, and/or stream connec-
tions for passing scquences of similar data.

Fhahf control

[0009] Control of data flow timing between the component
objects can be established by a topological sort. The topo-

locical sort can be made usine a directed acvelic oranh of the
10g1Car 5011 Can o€ madl using a GireCied aCyCiil grapn 81 il

component objects by run rate and connection type. The
component objects and the connection objects can be sorted
by component object run rate, component object type, and
connection object type.

[0010] In another aspect, the invention encompasses a
software development system comprising a computer for
cAc:\,uLu15 an initialization SCi‘ipt to define relanonslupb
between a plurality of component objects and a plurahty of
connection objects, wherein the component objects receive
input data and produce output data and the connection
objects pass data between the component objects.

BRIEF DESCRIPTION OF THE DRAWINGS

Mmo11l T 1ig 0 hlack diagram illngtrating a life cvele o
LUYvii] xaSs. 1 15 & 010CK Giagram 1uusiraung a i1ie CyCeie ¢

=

a software development system in accordance with thi
invention.

[0012] FIG. 2 is a block diagram illustrating a software
simulation environment.

©w

DETAILED DESCRIPTION OF THE
INVENTION

VAN 11

[0013] The software architecture of this invention is
derived from the application of an object-based approach to
model any unmanned system such as an unmanned aircraft.
The objects are connected in a structure that represents a
model of the system. The model is achieved by writing an
initialization script, which creates specified system compo-

nents and establishes the connections hetween them. A
nents and establishes the conneclions between them. A

“component” object is an object that takes input data and
produces output data, while a “connection” object is the
means of passing data from one component to another. A
connection allows the user to view a signal, perturb a signal,

or iniect a fanlt
Or 1ject a iauit.

[0014] A component can represent a hardware or software
component of a flight system. It can be as simple as a single
switch or relay, and it can be as complicated as a complete
vehicle management computer. Components exist only to
receive inputs and generate outputs, and do not need to know
what is providing the inputs or what is using the outputs.

Connection OﬁJCLLb are bu‘ﬂl:uy puuu-lu-poiﬁl coiinectioiis
between components and represent the physical means of
transferring data. In one embodiment of the invention, three
connection classes were created to simulate the wide range
of possible connection types. “Scalar” connections pass
single data elements, “Vecior” connections pass arrays of
data, and “Stream” connections pass sequences of data.
Examples of scalar values are: the outside air temperature,
the fuel level, or the position of a control surface. Examples
of vector values are: the position of the vehicle in space, or
the attitude of a sensor. Stream values can be, for example,
image outputs from sensors such as a Synthetic Aperture
Radar (SAR) or measurements from a sensor transmitted
over an asynchronous serial port.

US 2006/0174221 Al

[0015] Referring to the drawings, FIG. 1 is a block

diaoram that can he nsed to describe the invention. For the
alagram that can be used to gescribe the mvention. ror the

purposes of this description, the invention will be described
as it can be applied to the development of an unmanned
aircraft control system. However, it should be understood
that the invention is applicable to other systems as well,
including space, ground, marine and cyberspace based sys-
tems. In FIG. 1, block 10 represents an Automated Com-
ponent Simulation (ACSIM) virtual environment that can be
used to provide virtual testing of the system in simulated
flight with time being either equal to, faster than or slower
than real time. The ACSIM virtual environment can be
implemented on a single laptop PC. The virtual environment
includes a flight dynamics module 12, one or more flight
sensors 14, a set of redundant flight controllers (computers)
16, and one or more of air vehicle subsystem elements 18.
At this point in the system development, aii of the system
elements are simulated in software. Each of these elements
is implemented as a component object. A plurality of con-
nection objects are used to specify the permitted interactions
between the components. A test configuration and control
script 20 is used to control the configuration of components
and connections and hence the interactions between the
components. A graphical user interface 22 is provided for
communication Wlth the system. The virtual environment
can be used to simulate the air vehicle control system in
non-real time.

[0016] Components may be developed in any object ori-
ented language that facilitates code re-use by inheritance and
polymorphic behavior. A component will define its inputs
and their enumerated types, a run method that performs
some calculation on these inputs to generate defined outputs,
and a run rate at which the component should be activated.
The initialization script will register components with a
dispatch manager component to execute at a specific run rate
(for example: 400 Hz, 100 Hz, 50 Hz, 20 Hz, 1 Hz, ¥ Hz,
etc). Connections between components are specified in the
initialization script which is executed once immediately
prior to run time. Control is implemented at two levels. The
first level of control is in the run method of a component,
where for each of the component’s inputs the component
calls the get method for whatever is connected to its inputs
(for example from another component or a connection) as
defined by the control script. Then the component updates its
outputs by calling its own put methods. The second level of
control is for a component which is connected to a sensor (or
in this case, a simulated sensor). The get method is first
called to obtain the latest raw sensor data, then the get
method for other redundant sensors are called via a signal
comparator component (a component type that performs
filtering on raw sensor data) to obtain the other filtered
values, finally the output of the component is updated by

PQ]]II’\\“I its own nut method

Calilny 2 1S 1 pul metnoead.

[0017] The components connected to a raw sensor have
their run methods called at a fundamental frame raie (“heart-
beat”) or some multiple thereof. For example, if the funda-
mental frame rate is 400 Hz, then all components with a rate
of 400 Hz have their run methods called at every funda-
mental frame (once every 2.5 ms), while the components
with a rate of 100 Hz have their run methods called every 4™
fundamental frame (400 modulo 100), components with a
rate of 50 Hz have their run methods called every 8%
fundamental frame (400 modulo 50) and so on.

[\

Aug. 3, 2006

[0018] Block 30 represents a stage of the system devel-

onment in which the virtual environment interfaces with

opment 1n 1ch e virtual environment mieriaces

flight computer hardware. Outer block 32 represents hard-
ware and inner block 34 represents the virtual automated
component simulation test engineering (ACSIM) environ-

ment. At this stage, hardwarce in the form of a redundant
flicht commnuter set illustrated hy hlock 36 is connected to the

flight computer set illustrated by block 36 is connected to the
virtual flight sensors and the virtual air vehicle subsystem
elements. The configuration of block 30 includes the flight
computer as hardware-in-the-loop, and permits partial real
time testing of the system. The Virtual flight computer 16

114 ha A thi Ty
CouIa e usca at tiis oméu, out it is not HCCCH54aiy.

[0019] Block 40 represents a stage of the system devel-
opment in which the virtual environment interfaces with
additional hardware for hot bench hardware-in-the-loop
testing. Outer block 42 represents hardware and inner block
44 represents the virtual automated component simulation
test engineering (ACSIM) environment. At this stage, the
flight sensors 46 and air vehicle subsystems 48 are imple-
mented in hardware. This testing would be performed in real
time. The virtual flight computer 16 could be used at this
stage, but it is not necessary.

[0020] FIG. 2 is a block diagram showing another
embodiment of the invention, which includes a Remote
Component and Connection Architecture having a multiple
object hierarchy accessibie via a web browser. A main
ACSIM program 60, which includes a plurality of proxy
objects 62 receives data from a component object model
interface 64 that is coupled to a visual basic script test stand,
ipreadcheet or other data source 66. A graphical user
interface 68, which can inciude a ACSIM browser is pro-
vided for user inputs to the ACSIM main program. The
ACSIM main program is coupled to a simulation control
interface 70, which can be an Ethernet that is coupled to a
shared memory. The simulation control interface is in turn
coupled to a real time simulation environment iliustrated by
block 72. The real time simulation environment includes a
nlurqht_v of ﬁthT computers identified as item 74 that
1nterface with a plurahty of sensor modules 76 and sub-
systems 78. The sensor modules 76 and subsystems 78 also
interface with a flight dynamics model 80. The simulation

control interface can also be connected to remote simulation
assets or hardware in the]nr\p as shown bv arrow 82.

€IS Or harcgware 1 1ne 100p as shown by arro

[0021] Active X technology can be used to connect

f““nrp M\ the Vqﬁnnc svstem comnonents Viq a startun scrint

) the various system components via a startup script
at runtime. Any combination of software and hardware
components may be connected at runtime. Components may
be remotely located on other machines. This invention is
applicable to both simulated and real Unmanned Autono-

mone Vahiclag (TTAV)
MOUsS YeniCils (UAVS).

[0022] The invention can further provide a method to

synchronize the flow of data between software components

in an autonomous software system in order to guarantee

stable input and output data. The control of data flow timing

between components is established and guaranteed at run

time by a topological sort. The topological sort can be made
TN A /N 41

by a Directed Acyclic Graph (DAG) of the components by
frame run rate and connection type.

[0023] A synchronization algorithm evaluates the compo-
nent and connection topology (as specified in the startup
script) and sorts the objects by component run rate, com-
ponent type, and connection type to guarantee stability of

US 2006/0174221 Al

data both interframe and intraframe. Intraframe data is data
that nasses hetween two comnonents havine the same run

that passes belween componenis naving ine same run

rate (for example, a 50 Hz component to another 50 Hz
component), and interframe data is data that passes between
two components of different run rates (for example, a 50 Hz
component to a 10 Hz component).

[0024] When used in the context of an unmanned aircraft
system, the Remote Component and Connection Architec-
ture permits the single instance of the OFP executable
software to be broken into reusable fundamental compo-
nents. It allows the components to be assembled at run time
via a script and executed in part or in whole. The execution
can be decoupled from both the target hardware and other
software components such that it can run on any desktop or
laptop computer. Additionally, software components may
also be decoupled from each other to run on different

computers.

ModET Tha othad nlo al
LVUV&S] 1nc methoa not Uu.x_y di

ponents to be assembled into a single OFP component and
virtually flown on either a personal computer or the final
flight computer, but multiple OFP components can be
assembled into a redundant flight control virtual air vehicle
and virtually flown on a personal computer. In addition,

components may be remotely distributed and run on mul-
tiple PCs.

,n
)
P
b
v
=
o
-
jo
E
o
&
|2
E
£
£
&
B
<
¢
<
=
T

[0026] This invention permits the standalone development
and test of software mdenendent of any and all associated

flight hardware in four distinct modes:

ha
oc

aoftarave T s T oy

sO1twarc \/Gluyuucﬁl miay

ngla sndividiial

1. Slug,ACfAu 1naGiviauan
developed, instantiated and tested standalone on a PC, for
example the Air Data computer software unit (CSU).

2. Partial—A collection of software components represent-
ing a subset of the final OFP may he developed, instantiated

and tested standalone on a PC, for example the Air Data
CSU, Navigation CSU and I'light Control Surface CSU.

3. All—All software components may be assembled into the
final OFP component, tested, and virtually “flown” standa-
lone on a PC, or on the real flight computer on a hot bench.

[0027] 4. Multiple—Multiple OFP components may be
assembled into a desired vehicle configuration: simplex,
duplex, triplex or quad (one, two, three or four flight
computers) and virtually “flown” standalone on a personal
computer.

[0028] The method of this invention can be incorporated
in a flexible object based software environment designed to
support the developiment, test and integration of redundant
fault tolerant flight computer software. The software envi-
ronment can be a deterministic periodic execution environ-
ment, which can be run in real time or non-real time. In a
preferred software environment, the main software execut-
able may also be hosied on a single personal compuier on the
desktop of an individual programmer. This allows members
of a software development team to use the virtual environ-
ment (including the virtual flight computer component run-
ning the Operational Flight Program) for software testing in
a location of their choosing (customer site, tradeshow, etc).
The availability of flight computer hardware assets is no
longer a roadblock to the early testing of flight software
elements.

(V8]

Aug. 3, 2006

[0029] The invention utilizes two basic classes of objects,
comnonents and connections, to fullv sunnort system testing

components and conneciions, 10 Uy support sysiem iesiing

in both an entirely simulated environment and in traditional
environments incorporating significant levels of “hardware-
in-the-loop.” By modeling the system of interest in terms of
components and conncctions, the invention provides the

ahility to make ranid reconfiourations in the test environ-
aovity 1o maxe rapia reconligurafions i the test environ

ment ranging from a single test case to the full air vehicle
configuration, without a recompile or build.

[0030] Once the initialization script for a modeled system
has been run to create and connect the components, a
topological sort is performed on components by frame run
rate and connection type to provide synchronization of data
between components. This ensures proper timing of the data
flow between components and guarantees that inputs to a
computational unit (component) are stable and valid before
they are used. Data types are also checked to ensure a valid
connection.

[0031] System timing dependencies are removed from the
OFP source code and established at connect time via a
startup script. While the prior art required detailed knowl-
edge and modification of source code to effect a data flow
change in the system model, the method of this invention
oniy requires knowliedge of the system modei.

[0032] Active components are controlled through a fixed
LdlC d\/LllelUll bC\iuCllL/D \Jldclcd Uy
initialization script. For example, the topological sort can
correctly set up data flow through the components “con-
nected” for a 50 Hz loop to control the position of control
surfaces. The data flow generated by the sort could be as
follows. On a 50 Hz frame N n aii air transducer COﬂlpOucul
generates static and dynamlc air pressure outputs to the
navigation component, which then generates position out-
puts on frame N+1 to the aircraft control surfaces, which
then generate outputs on frame N+2 to the 6DOF Flight
Dynamics Component, which generates new truth data on
frame N+3 back to the air transducer, closing the loop.
100331

LYVU33]

passive components. The difference between the two is that
an active component is explicitly “Run” (via a “Run”
method) to cause it to examine inputs and generate new
outputs that are sent via connections to other components. A
nacaive comnonent ¢ triccared hy o changing innut valia Tn
passive component is triggered by a changing input value. In
practice only very simple components, such as a temperature
transducer, can be implemented as a passive component.

[0034] The method of this invention will allow software
developers to begin with known validated software compo-
nents that they have previously validated. Additionally, the
software developers may all work in parallel to design, test,
fly, and validate a new component on their own laptop. This
work may proceed Wlthout regard for what the ﬂlght com-
puter(s) will be, when they will be available, or the operating

systems that will control them.

+hh tha
luCu \Acauuu Au uic

A modeled svstem will include hoth active and
A MECeied sysiem wiil 1nGiuge poln aclive and

[0035] The invention allows code reuse from one
Unmanned Autonomous Vehicle (UAV) to the next, which
will reduce software development time. By being able to
begin software development in parallel from a previously
validated baseline library of components, a new UAV
project can effectively manage risk and shrink the time to
first flight. This approach is designed to be independent of
the air vehicle’s lift and propulsion methods, for applica-
tions ranging from marine, terrestrial, atmospheric, space
and cyberspace.

US 2006/0174221 Al

[0036] The benefits of this new approach are that signifi-

cant cost and schedule savings will be realized by allowing

program specific UAV software to be developed, tested and
verified before any flight hardware is delivered or any
systems integration capital facilities are built. The target run
time cnvironment can be a deterministic periodic execution

environment of anv fiindamental frame rate. It is within this
environment of any lundamental frame rate. it 1s within this

environment that OFP software components can be devel-

oped and either (a) tested in an automated or manual fashion,

or (b) aggregated into a full-up OFP that can be tested and

“flown” in a virtual environment on a laptop with no
v drara

ho i tha 14
narawarc i umc AUUP

[0037] There is no operating system preference and the
OFP code is not required to use any operating system
dependent constructs, except that hardware partitioning can
be used for the purpose of separating flight and mission

critical code into separate memory partitions.

[0038] The OFP developed with this invention can be
DO-178B certifiable. This is accomplished by porting the
software environment to one or more commercial run time
operating systems that are able to provide hardware parti-
tioning. DO-178B certification is not required, but appli-
cable DO-178B tailored processes can be used where the
quality of the end product would significantly benefit with-
out undue costs. In one embodiment of the invention, an
ARINC-653 Application Program Interface (API) is
assumed as a minimal baseline capability.

5

0039] The invention will support operation from simpiex
to quadruplex computer configurations. The OFP can be
payload-independent and any payload-specific software can
be relegated to a separate partition or processor. The final
software product is inherently portable, particularly for the
“core services”, and therefore applicable to any platform.

—
<

[0040] Software testing can include automated unit tests
(test harnesses) for each “component”, and can support
scalable configurations up to and including full hardware-
in-the-loop testing.

[0041] The software can be implemented in any object
oriented language which is designed to capitalize on code
re-use (the C++ and Java languages are representative of the
state of the art at the time of this writing). For example,
computer software units (CSUs) written in C++ that are used
unchanged, can be compiled with a C++ compiler to allow
to he utilized.

nominal modifications for fanlt locoina. etc

neminal moailications 1or auit iegging, ¢ic.,

[0042] The ability to test a warm restart capability by
simulating a crash of onc of the virtual flight computers in
mid-flight and then testing its ability to automatically re-
synchronize with the other virtual flight computers is sup-
ported by enabling components to save internal states and
calling a restore method. Additiona]ly the ability to initially
start a virtual ﬂléhl comp‘uun in a 1111d'111511t condition \ab
opposed to starting it on the ground and virtually “flying” i

to the mid-flight condition) for the purpose of testing a

specific failure is also supported by the same means.

[0043] This invention can be used to develop and fly an
unmanned system comprised of one to four virtual flight
computers in any physical location (such as a customer site,
tradeshow, or during travel). The invention can be impie-
mented on a commercially available laptop personal com-
puter running Windows. No Operating System for the virtual
flight computer is required. Failure conditions can be

s

Aug. 3, 2006

inserted and monitored in real time via a web browser or any
Active X canable scrintine lanonaoce enoine. No snecialized

AWCLIVE A Capable sCripling 1anguage Sngine. INO speciallze

development tools are required.
100441
LYVER]

While the present invention has heen described i

terms of its presently preferred embodiments, it will be

apparent to those skilled in the art that various changes can
be made to the disclosed embodiments without departing
from the scope of the invention as defined by the following

claime
<iaims.

:3

What is claimed is:
1. A method of developing software comprising the steps
ol:

defining a plurality of component objects for receiving
input data and producing output data;

defining a plurality of connection objects for passing data
between the component objects; and

executing an initialization script to define relationships
between the component objects and the connection

chiactg
cojects.

2. The method of claim 1, wherein:

aach of the comnonent ghiects dafines a min methad for
€acilt 01 Wie component 6ojects Geines a run metnoca 1oy

processing the input data to produce the output data;
and

each of the component objects operates at a defined run
rate.
3. The method of claim 2, wherein:

a dispatch manager calls each of the component objects in
accordance with the run rate of the component objects.
4. The method of claim 1, further comprising the step of:

controlling one or more of the connection objects to view
a signal, perturb the signal or inject a fault.

5. The method of claim 1, wherein:

each of the component objects represents a hardware
component or a software component of a flight control
system.

6. The method of claim 1, wherein the connection objects
comprise one or more of:

cealar connectiong for nacging qincle data alamentg:

scalar connections for passing single data elements;

vector connections for passing arrays of data; and

stream connections for passing sequences of similar data.
7. The method of claim 1, wherein:

control of data flow timing between the component
objects is established by a topological sort.
8. 'The method of claim 7, wherein:

the topological sort is made using the directed acyclic
graph of the component objects by run rate and con-
nection type.

9. The mcthod o

the component objects and the connection objects are
sorted b y componem ooject rui rate, COI‘ﬂpOﬂe‘ﬂt Gﬁjcu
type, and connection object type.

10. The method of claim 1, wherein:

the component objects are controlled through a fixed rate
activation sequence ordered by the creation of the
component objects in the initialization script.

US 2006/0174221 Al

11. The method of claim 1, wherein:

the component objects are run in a deterministic periodic

execution environment.
The method of claim 1

12. The me wherein:

the component objects arc decoupled from cach other to

mn on different comnuters
run on daifierent computers.

13. The method of claim 1, further comprising the steps
of:

saving internal states of the component objects; and

Mg o othad ta vagtart tha anfia
111115 a restore mcthod 1o restart thic soitwarc.
S

oftware development system comprising:

14. A

a comnittor for aveciiting an initiglizatinm corint 0 Aaffna

a \/ULILP‘ULCJ. 1071 :z(cu'uuué an initialization SCripi o define
relationships between a plurality of component objects
and a plurality of connection objects, wherein the
component objects receive input data and produce
output data and the connection objects pass data
between the component objects.

15. The system of claim 14, wherein:

each of the LUIIIPUIIUIIL UDJGLLb defines a run method for

processing the input data to produce the output data;
and

each of the component objects operates at a defined run
rate.
16. The system of claim 15, wherein:

a dispatch manager calls each of the component objects in
accordance with the run rate of the component objects.
17. The system of claim 14, further comprising:

an interface for controlling one or more of the connection
objects to view a signal, perturb the signal or inject a
fauit.

18. The system of claim 14, wherein:

each of the component objects represents a hardware

component or a software component of a flight control
system.

Aug. 3, 2006

wn

19. The system

of claim 14, wherein the connection
objects r

S ne or more of:

commnrise
comprise
scalar connections for passing single data elements;
vector connections for passing arrays of data; and

stream connections for passing sequences of similar data.
20. The system of claim 14, wherein:

control of data flow timing between the component
objects is established by a topological sort.
21. The system of claim 20, wherein:

the topological sort is made using a directed acyclic graph
of the component objects by run rate and connection

type.

22. The system of claim 20, wherein:

the component objects and the connection objects are
sorted by component object run rate, component object
type, and connection object type.

23. The system of claim 14, wherein:

the component objects are controlled through a fixed rate

activation sequence ordered by the creation of the
component n‘hwrm in the initialization scrint

24. The system of claim 14, wherein:

4lan mmcanie e et el e e maie 21 oo A

LIc LUlllPUllClll UUJCL,Lb dIT 1ull 111 a K
execution environment.

25. The system of claim 14, wherein:

the component objects are decoupled from each other to
run on the same or different computers.

26. The system of claim 14, further compnsing the steps
of:

saving internal states of the component objects; and

calling a restore method to restart the software.

